K.L.N. COLLEGE OF ENGINEERING

Pottapalayam-630612, Sivagangai District

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Estd: 1994

FINAL YEAR CURRICULUM AND SYLLABUS

REGULATIONS 2020

For Under Graduate Program

B.E. – MECHANICAL ENGINEERING

CHOICE BASED CREDIT SYSTEM

(For the students admitted from the academic year 2021-2022 onwards)

K.L.N. COLLEGE OF ENGINEERING, POTTAPALAYAM

(An Autonomous Institution, Affiliated to Anna University, Chennai) 🔰

VISION OF THE INSTITUTION

To become a Centre of Excellence in Technical Education and Research in producing Competent and Ethical professionals to the society.

MISSION OF THE INSTITUTION

To impart Value and Need based curriculum to the students with enriched skill development in the field of Engineering, Technology, Management and Entrepreneurship and to nurture their character with social concern and to pursue their career in the areas of Research and Industry.

VISION OF THE DEPARTMENT

To become a centre of excellence for Education and Research in Mechanical Engineering.

MISSION OF THE DEPARTMENT

- Attaining academic excellence through effective teaching learning process and state of the art infrastructure.
- Providing research culture through academic and applied research.
- Inculcating social consciousness and ethical values through co-curricular and extra-curricular activities.

K.L.N. COLLEGE OF ENGINEERING, POTTAPALAYAM

(An Autonomous Institution, Affiliated to Anna University, Chennai)

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- PEO 1 Graduates will have successful career in Mechanical Engineering and serviceindustries.
- **PEO 2** Graduates will contribute towards technological development through academic research and industrial practices.
- **PEO 3** Graduates will practice their profession with good communication, leadership, ethics and social responsibility.
- **PEO 4** Graduates will adapt to evolving technologies through life-long learning.

PROGRAM SPECIFIC OUTCOMES (PSOs)

- **PSO 1** Derive technical knowledge and skills in the design, develop, analyze and manufacture of mechanical systems with sustainable energy, by the use of modern tools and techniques and applying research based knowledge.
- **PSO 2** Acquire technical competency to face continuous technological changes in the field of mechanical engineering and provide creative, innovative and sustainable solutions to complex engineering problems.
- **PSO 3** Attain academic and professional skills for successful career and to serve the societyneeds in local and global environment.

K.L.N. COLLEGE OF ENGINEERING, POTTAPALAYAM

(An Autonomous Institution, Affiliated to Anna University, Chennai)

PO1: Engineering knowledge

Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis

Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions

Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems

Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage

Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6: The engineer and society

Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability

Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics

Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and team work

Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication

Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance

Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning

Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

K.L.N. COLLEGE OF ENGINEERING, POTTAPALAYAM

(An Autonomous Institution, Affiliated to Anna University, Chennai)

REGULATIONS 2020 For Under Graduate Program B.E. – MECHANICAL ENGINEERING CHOICE BASED CREDIT SYSTEM

CATEGORY OF COURSES

- Humanities and Social Sciences (HS) Courses include Technical English, Environmental Science and Engineering, Engineering Ethics and human values, Communication Skills and Management courses.
- ii. Basic Sciences (BS) Courses include Mathematics, Physics, and Chemistry.
- Engineering Sciences (ES) Courses include Engineering Practices, Engineering Graphics, Basics of Electrical / Electronics / Mechanical / Computer Engineering / Instrumentation etc.
- iv. **Professional Core (PC) Courses** include the core courses relevant to the chosen programme of study.
- v. **Professional Elective (PE) Courses** include the elective courses relevant to the chosen programme of study.
- vi. **Open Elective (OE) Courses** include courses from other departments which a student can choose from the list specified in the curriculum of the students B.E. / B.Tech. Programmes.
- vii. **Employability Enhancement Courses (EEC)** include Project Work and/or Internship, Seminar, Professional Practices, Case Study and Industrial/Practical Training.
- viii. **Mandatory (MC) Courses** include Personality and Character development and the courses recommended by the regulatory bodies such as AICTE, UGC, e

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	С
		THE	EORY					
1	20ME701	Mechatronics	PC	3	3	0	0	3
2		<u> Open Elective – II</u>	OE	3	3	0	0	3
3		Professional Elective – IV	PE	3	3	0	0	3
4		Professional Elective – V	PE	3	3	0	0	3
5		Professional Elective – VI	PE	3	3	0	0	3
		PRAG	CTICAL					
6	20ME7L1	Mechatronics Laboratory	PC	4	0	0	4	2
7	20ME7L3	Technical Seminar	EEC	4	0	0	4	2
ΤΟΤΑ	L			23	15	0	8	19

SEMESTER VII

SEMESTER VIII

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	С
		PRAC	CTICAL					
1	20ME8L1	Project Work	EEC	20	0	0	20	10
ΤΟΤΑ	L			20	0	0	20	10

SEMESTER VII OPEN ELECTIVE II

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Р	с
1	200E205	Industrial Energy Auditing and Management	OE	3	3	0	0	3
2	20OE305	Fundamentals of Image Processing	OE	3	3	0	0	3
3	200E405	Fundamentals of Machine Learning	OE	3	3	0	0	3
4	200E407	Computer Graphics	OE	3	3	0	0	3
5	200E408	Essentials of Data Analytics	OE	3	3	0	0	3
6	20OE507	Concepts of Ethical Hacking	OE	3	3	0	0	3
7	200E606	Modern Technologies for Vehicles	OE	3	3	0	0	3
8	200E607	New Generation Hybrid vehicles	OE	3	3	0	0	3
9	20OE608	Automotive Electrical and Electronic Systems	OE	3	3	0	0	3
10	200E708	Instrumentation for Agro food industry	OE	3	3	0	0	3

OPEN ELECTIVE - II (VII SEMESTER) offered to other Department

		SEMESTER VII ELE						
SI. No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	С
1	20OE105	Solar Photovoltaic Fundamentals and Applications	OE	3	3	0	0	3
2	20OE106	Fundamentals of Product Design	OE	3	3	0	0	3
3	200E107	Autonomous and Electric Vehicles	OE	3	3	0	0	3
4	20OE108	Industrial Safety Practices	OE	3	3	0	0	3

Professional Elective Courses – Verticals

Vertical 1	Vertical 2	Vertical 3	Vertical 4	Vertical 5	Vertical 6
Design and Development	Modern Manufacturing	Clean Energy Technologies	Robotics and Automation	Industrial Engineering	Modern Mobility Systems
Product Design and Development	Unconventional Machining Processes	Compressible Flow and Turbomachinery	Applied Hydraulics and Pneumatics	Statistical Quality and Control	Automobile Engineering
Product Life Cycle Management	Computer Integrated Manufacturing Systems	Power Plant Engineering	Industrial Robotics	Process Planning and Cost Estimation	Advanced Internal Combustion Engines
Design of Jigs, Fixtures and Press Tools	Composite Material and Mechanics	Engine Pollution and Control	Sensors and Actuators	Production Planning and Control	Two wheeler and Four wheeler Overhauling
Piping Design Engineering	Additive Manufacturing	Energy Conservation and Management	Automation in Manufacturing	Supply chain and Logistic management	Battery Technology
Computational Fluid Dynamics	Testing of Materials	Renewable energy sources	Virtual Instrumentation	Engineering Economics and Cost Analysis	Alternative fuels for IC engines
Innovation in design	Digital Manufacturing	Fundamentals of HVAC Systems	Data Analytics for Mechanical Engineering	Maintenance Engineering	Intelligent Transportation systems
		Energy efficient Buildings	Micro Electro Mechanical Systems	Operations Research	

Registration of Professional Elective Courses from Verticals:

Professional Elective Courses will be registered in Semesters V to VII. These courses are listed in groups called verticals that represent a particular area of specialisation / diversified group. Students are permitted to choose all the Professional Electives from a particular vertical or from different verticals.

Enrolment for B.E. / B. Tech. Minor degree (Optional)

A student can also optionally register for additional courses (18 credits) and become eligible for the award of B.E./B.Tech (Honors) or B.E./B.Tech Minor degree. For minor degree, a student shall register for the additional courses (18 credits) from semester V onwards. All these courses have to be in a particular vertical from any one of the other programmes. For more details on B.E./B.Tech (Honours) or Minor degree refer to the Regulations 2020 (Amendments), Clause 4 & Clause 16.

SEMESTER VII

MECHATRONICS

OBJECTIVES

20ME701

- To understand the functional key elements of mechatronics system.
- To study the characteristics and applications of various types of sensors and transducers.
- To impart knowledge in basic structure and programming of microprocessor.
- To learn about real-time interfacing system.
- To study the architecture, ladder logic program and applications of PLC.

PREREQUISITE:

Course code:20GE203

Course Name: Basic Electrical, Electronics and Instrumentation Engineering

UNIT - I INTRODUCTION TO MECHATRONICS - SENSORS AND TRANSDUCERS 9 Introduction to Mechatronics – Systems - Key elements – Concepts of Mechatronics approach – Need for Mechatronics – Emerging areas of Mechatronics – Classification of Mechatronics. Sensors and Transducers: Static and dynamic Characteristics of Sensor, Potentiometers – LVDT – Capacitance sensors – Strain gauges – Eddy current sensor– Hall effect sensor – Temperature sensors – Optical Encoders- Pyroelectric sensor- Piezoelectric sensor- tactile sensor- Light sensors.

UNIT – II MICROPROCESSOR AND MICROCONTROLLER

Introduction – Architecture of 8085 – Pin Configuration – Addressing Modes –Instruction set, Timing diagram of 8085- Assembly language programming – Examples. Concepts of 8051 microcontroller – Block diagram– Memory map - Addressing modes, I/O Ports.

UNIT – III PROGRAMMABLE PERIPHERAL INTERFACE

Introduction – Architecture of 8255, Keyboard interfacing, LED display –interfacing, ADC and DAC interface, Temperature Control – Stepper Motor Control – Traffic Control interface.

UNIT – IV PROGRAMMABLE LOGIC CONTROLLER AND VIRTUAL INSTRUMENTATION

Introduction – Basic structure and Specifications – Input and output processing – PLC hardware components Analog & digital I/O modules, Programming – Mnemonics – Timers, counters and internal relays – Data handling – Selection of PLC- Applications.

Virtual Instrumentation: Block diagram and architecture of a virtual instrument, data -flow techniques, graphical programming in data flows.

UNIT - V ACTUATORS AND MECHATRONIC SYSTEM DESIGN

Types of Stepper and Servo motors – Construction – Working Principle – Advantages and Disadvantages. Design process-stages of design process – Traditional and Mechatronics design concepts – Case studies of Mechatronics systems – Pick and place Robot – Engine Management system – Automatic car park barrier- Washing machine system- Automatic Camera.

TEXT BOOKS:

- 1. Bolton, W "Mechatronics", Pearson Higher Education, 2017.
- 2. Ramesh S Gaonkar, "Microprocessor Architecture, Programming, and Applications with the 8085", Prentice Hall, 6th Edition, 2013.
- 3. Michael B.Histand and Davis G. Alciatore, "Introduction to Mechatronics and Measurement systems", McGraw Hill International edition, 2007.

L T P C 3 0 0 3

9

9

TOTAL: 45 PERIODS

9

REFERENCES:

1. Bradley D.A, Dawson D, Buru N.C and Loader A.J, "Mechatronics", Chapman and Hall, 1993.

2. Clarence W, de Silva, "Mechatronics" CRC Press, First Indian Re-print, 2015.

3. Devadas Shetty and Richard A. Kolk, "Mechatronics Systems Design", PWS publishing company, 2007.

4. Krishna Kant, "Microprocessors & Microcontrollers", Prentice Hall of India, 2016.

5. Jovitha Jerome, "Virtual Instrumentation Using LabVIEW", Kindle Edition, PHI Publishers, 2010.

OUTCOMES:

Course I	Name: N	ame: MECHATRONICS									Course Code: 20ME701						
CO				Οοι	ırse Ou	utcome	s				Unit	K –CO	PC)s	PSO		
C401.1	Describ Mechar Electror	e the i nical and nic Syste	nterdiso d Com ems ano	ciplinary puter S d senso	/ applic Systems r techn	cations s for tl ology.	of Ele ne Con	ectronic trol of	s, Elec Mecha	trical, nical,	Ι	K2	1,2	,3	1,2,3		
C401.2	Explain Diagrar Microco	the ar n, Addre ontroller.	chitectu essing I	ire of Modes	Micropr and Pro	ocesso ogramn	r and ning of	Microco Micropi	ontroller ocesso	, Pin r and	II	K2	1,2,3	3,4	1,2,3		
C401.3	Discuss PPI, an	Discuss the Programmable Peripheral Interface, Architecture of 8255 III K2 1,2,3,4,5 1,2,3 PPI, and various device interfacing. III K2 1,2,3,4,5 1,2,3 Describe the architecture Programming and applications of the second															
C401.4	Describ Prograr	e the mmable	archit Logic C	ecture, ontrolle	Prog ers in in	rammir dustries	ng ano s.	d app	lication	s of	IV	K2	1,2,3	,4,5	1,2,3		
C401.5	Explain program	the arch nming of	nitecture f Virtual	e, data Instrun	flow teo nents.	chnique	s and g	raphica	I		IV	K2	1,2,3	,4,5	1,2,3		
C401.6	Discuss the kno	s about t wledge a	he vario and skil	ous acti Is acqu	uators u ired thre	used in ough th	mechat	ronics : e.	system	using	V	K2	1,2,3	,4,5	1,2,3		
							CO-PO	Mappi	ng								
CO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PS O2	PSO3		
C401.1	2	2	1	-	-	-	-	-	-	-	-	-	2	2	1		
C401.2	2	2	1	1	-	-	-	-	-	-	-	-	2	2	1		
C401.3	2	2	2	1	1	-	-	-	-	-	-	-	2	2	1		
C401.4	2	2	2	1	2	-	-	-	-	-	-	-	2	2	1		
C401.5	2	2	2	1	2	-	-	-	-	-	-	-	2	2	1		
C401.6	2	2	2	1	1	-	-	-	-	-	-	-	2	2	1		

	L	Т	Ρ	С
MECHATRONICS LABORATORY	0	0	4	2

OBJECTIVES:

- To know the assembly language programming in microprocessor and microcontroller.
- To impart knowledge in the design, modeling & analysis of basic electrical, hydraulic, pneumatic system.
- To understand the working of interfacing circuits for stepper motor, servo motor and traffic light controller.
- To know the programming of LabVIEW and Fluidsim software.
- To understand the circuit connection for PLC based Electro Pneumatic system.

PREREQUISITE:

Course Code: 20GE203

Course name: Basic Electrical, Electronics and Instrumentation Engineering

LIST OF EXPERIMENTS

1. Assembly language programming of 8085 – Addition – Subtraction – Multiplication – Division – Sorting – Code Conversion.

- 2. Stepper motor interface.
- 3. Traffic light interface.
- 4. Speed control of DC motor.
- 5. Study of various types of optical transducers.
- 6. Study of hydraulic, pneumatic and electro-pneumatic circuits.
- 7. Modelling and analysis of basic hydraulic, pneumatic and electrical circuits using software.
- 8. Study of PLC based Electro Pneumatic circuit with multiple cylinder sequences.
- 9. Study of Image processing technique.
- 10. Real-time temperature data logging system with LabVIEW software and DAQ cards.
- 11. Study of Process control trainer for controlling pressure and flow rate of the liquid.

TOTAL: 60 PERIODS

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

S. No.	Name of The Equipment	Quantity
1.	Basic Pneumatic Trainer Kit with manual and electrical Controls / PLC Control each	1
2.	Basic Hydraulic Trainer Kit	1
3.	Hydraulics and Pneumatics Systems Simulation Software	10
4.	8051 - Microcontroller kit with stepper motor and drive circuit sets	2
5.	8051 – Microcontroller kit with traffic light control and Dc motor control	1
6.	8085 microprocessor with interfacing kit	2
7.	Optical transducer trainer kit (LDR, Photo diode, Photo Transistor)	1
8.	Image processing system with hardware & software	1
9.	LabVIEW software with DAQ cards	2
10.	Process Control trainer kit	1

Course I	Name:	MECH	ATRON	ICS L	BORA	TORY	,			Course Code: 20ME7L1						
CO				Cou	rse Ou	tcome	s				Exp	eriments	K –CO	P	Os	PSO
C406.1	Develo sorting	op the p , code	orogran convers	n for ar sion fur	ithmetions.	c functi	ions an	d the p	orogram	for		1	K3	1,2,3	,4,5,9	1,2,3
C406.2	Develo steppe	op the p er motor	rogram and D	n codes C moto	s to inte r.	erface v	with traf	fic ligh	t control	ler,		2,3,4	K3	1,2,3	,4,5,9	1,2,3
C406.3	Detern and Pl	nine the noto tra	e perfor nsistors	mance 3.	charac	teristic	s of LD	R, Pho	to diode	;		5	K3	1,2,3	,4,5,9	1,2,3
C406.4	Constr by usir	ruct the ng simu	hydrau lation s	ulic, pn oftware	eumations and a	c and e Iso inte	electro erface w	oneum /ith PL(atic circ C.	uits		6,7,8	K3	1,2,3	,4,5,9	1,2,3
C406.5	Develo analys	op grapl is and t	hical pr empera	ogrami ature da	ning lai ata logo	nguage ging sys	e codes stem.	for ima	age			9,10	K3	1,2,3	1,2,3,4,5,9	
C406.6	Constr rate of with La	ruct the the liquabVIEW	circuit uid in p / softwa	to conf rocess are.	rol the contro	tempe I traine	rature, r kit by	pressu using	re and f DAQ ca	low rds		11	КЗ	1,2,3	,4,5,9	1,2,3
							CO-	PO Ma	pping							
CO	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	10	PO11	PO12	PSO1	PSO2	PSO3
C406.1	3	2	2	1	1	-	-	-	3	-	-	-	-	3	2	1
C406.2	3	2	2	1	1	-	-	-	3	-	-	-	-	3	2	1
C406.3	3	2	2	2	1	-	-	-	3	-	-	-	-	3	3 2	
C406.4	3	2	2	1	1	-	-	-	3	-	-	-	-	3	1	
C406.5	3	2	2	1	2	-	-	-	3	-	-	-	-	3	2	1
C406.6	3	2	2	1	1	-	-	-	3	-	-	-	-	3	2	1

20ME71 2		L	Т	Р	С
201412723	TECHNICAL SEMINAR	0	0	4	2

A student has to present three Technical papers or recent advances in engineering/technology that will be evaluated by a Committee constituted by the Head of the Department.

TOTAL: 60 PERIODS

OUTCOMES:

Course	urse Name : TECHNICAL SEMINAR													Course Code : 20ME7L3					
CO					Cou	rse Ou	tcomes	6				Unit	K-CO	POs	PSOs				
C407.1	Fı Ei	unction ef	Inction effectively as an individual and Make effective presentation on - K4 1-12 1,2 Ingineering/ technology. Eview prepare and present technological developments in the field of - K4 1-12 1.2																
C407.2	R m	eview, pre echanica	epare a l engine	nd pres ering.	ent teo	hnolog	ical dev	elopme	ents in t	the field	d of	-	K4	1-12	1,2				
C407.3	D	esign doo	umenta	ation an	d write	effectiv	/e repo	rts on s	eminar	topics		-	K4	1-12	1,2				
							CO-	PO Ma	oping										
CO		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2				
C407.1		3	3	2	1	1	1	1	1	1	1	1	1	2	2				
C407.2	'.2 3 3 2 1 1 1 1 1 1 1 2 2																		
C407.3	3	3	3	2	1	1	1	1	1	1	1	1	1	2	2				

9

q

q

Professional Elective Courses20MEV11PRODUCT DESIGN AND DEVELOPEMENTLTPC303

OBJECTIVES

- To understand various global trends and identify the scope of a new product development.
- To translate conceptual idea into detailed design.
- To understand the concept of product development.
- To impart knowledge on various industrial design process.
- To create prototype to demonstrate the product.

PREREQUISITE: NIL

UNIT - I INTRODUCTION

Strategic importance of Product development – Modern Product development process – Examples of Product development process - Understanding customer needs – Types of Customer needs - Gathering Customer needs – Benchmarking and Establishing Engineering Specifications – A benchmarking Approach - Examples.

UNIT – II CONCEPT GENERATION AND SELECTION

Task – Structured approaches – clarification – search – externally and internally – explore systematically – reflect on the solutions and processes – concept selection – methodology –benefits.

UNIT - III PRODUCT ARCHITECTURE

Implications – Product change – variety – component standardization – product performance – manufacturability – product development management – establishing the architecture – creation – clustering – geometric layout development – fundamental and incidental interactions – related system level design issues.

UNIT – IV DESIGN FOR MANUFACTURING AND PRODUCT DEVELOPMENT

Definition – Estimation of Manufacturing cost – reducing the component costs and assembly costs– Minimize system complexity – Prototype basics – principles of prototyping – planning for prototypes UNIT - V INDUSTRIAL DESIGN 9

Integrated process design – Managing costs – Robust design – Need for industrial design – impact – design process – investigation of for industrial design – impact – design process–conceptualization – refinement – management of the industrial design process – technology driven products – user – driven products – assessing the quality of industrial design.

TOTAL: 45 PERIODS

TEXT BOOKS:

1. Anita Goyal, Karl T Ulrich, Steven D Eppinger, "Product Design and Development", Tata McGraw Hill Education, 4thEdition, 2009.

2. Kevin Otto, Kristin Wood, "Product Design", Indian Reprint 2004, Pearson Education.

3. George E Dieter, Linda C Schmidt, "Engineering Design", Mc-Graw Hill International Edition, 5th Edition, 2012

REFERENCES:

1.Kemnneth Crow, Concurrent Engg./Integrated Product Development, DRM Associates, 26/3,Via Olivera, Palos Verdes, CA 90274(310) 377-569, Workshop Book.

2.Stephen Rosenthal, Effective Product Design and Development, Business One Orwin, Homewood, 1992.

3.Staurt Pugh, Tool Design -Integrated Methods for Successful Product Engineering, Addison Wesley Publishing, New york.

4.Reddy G B, "Intellectual Property Rights and the Law", Gogia Law Agency, 7thEdition Reprint, 2009 5. Chiu-Shui Chan, "Style and creativity in design" Springer, 2015.

Course N	e Name : PRODUCT DESIGN AND DEVELOPEMENT Course Code : 20MEV11															
CO				Cou	rse Ou	tcome	s				Unit	K-C	:0	POs		PSOs
CO1	Expla	in the b	asic co	oncepts	of pro	duct de	sign an	nd deve	lopmer	nt	Ι	ĸ	2	1,2,3,6,9,	10	1,2,3
CO2	Descr	ibe the	basic	concep	ts of co	ncurre	nt Engi	neering			Ι	K	2	1,2,3,6,9,	10	1,2,3
CO3	Gene the be	rate va est con	rious co cept	oncepts	s for a p	oroduct	design		П	K	K3 1,2		,10	1,2,3		
CO4	Discu	ss the o	concep	ts and	importa	ince of	produc	t archit	ecture			K	2	1,2,3,6,9,	10	1,2,3
CO5	Illustra aesth	ate the etics fa	e impo ctors a	ortance nd ergo	of ir onomic	ndustria factors	I desi	gn in	view	of	IV K2 1,2,3,6,9,			10	1,2,3	
CO6	Apply manu	desię facturir	gn for ng cost	· man without	ufactur compr	e gui omisin	delines g qualit	for y	reducii	ng	V	K	3 1	,2,3,4,6,9	,10	1,2,3
							CO-PC) Марр	ing							
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 1	0	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	-	-	1	-	-	1	1		-	-	2	1	1
CO2	3	2	1	-	-	1	-	-	1	1		-	-	2	1	1
CO3	3	2	1	1	-	1	-	-	1	1		-	-	2	1	1
CO4	3	2	1	-	-	1	-	-	1	1		-	-	2	1	1
CO5	3	2	1	-	-	1	-	-	1	1		-	-	2	1	1
CO6	3	2	1	1	-	1	-	-	1	1		-	-	2	1	1

0

0

З

20MEV22 COMPUTER INTEGRATED MANUFACTURING SYSTEMS

OBJECTIVES

- To understand the application of computers in manufacturing systems.
- To know the concept of cellular manufacturing systems.
- To familiarize about FMS and its applications.
- To comprehend the application of automation and AGVS in industry.

• To know the application of computer for generating process planning of the product.

PREREQUISITE: NIL

UNIT - I INTRODUCTION TO CIM AND AUTOMATION

Automation in Production Systems, automated manufacturing systems- types of automation, reasons for automating, Computer Integrated manufacturing, computerized elements of a CIM system, CAD/CAM and CIM.

Mathematical models and matrices: production rate, production capacity, utilization and availability, manufacturing lead time, work-in process, numerical problems.

UNIT – II CELLULAR MANUFACTURING SYSTEMS

Group technology-Part Families, Features and Optiz of Parts Classification and Coding Systems, Machine Cell Design, Applications Of Group Technology.

Quantitative analysis of Cellular Manufacturing, Grouping of parts and Machines by Rank Order Clustering method - Hollier Method – Simple Problems.

UNIT – III FLEXIBLE MANUFACTURING SYSTEMS

FMS- Flexibility – Types of FMS- Components - work stations – FMS layout configurations- Computer control and functions – Applications.

Analysis of flexible manufacturing systems – Bottleneck model – sizing the FMS –simple numerical problems.

UNIT – IV AUTOMATED ASSEMBLY SYSTEMS AND AUTOMATED GUIDED VEHICLE SYSTEM (AGVS)

Automation – Basic elements- power - program of instructions – control system – levels of automation. Fundamentals of automated assembly systems – system configurations - parts delivery – applications.

Automated Guided Vehicle System (AGVS) – AGVS Application – Vehicle Guidance technology – Vehicle Management & Safety.

UNIT - V COMPUTER AIDED PROCESS PLANNING SYSTEMS

Computer aided Process Planning – Variant process planning – Generative process planning– Forward and backward planning, input format.

Totally Integrated process planning systems – Expert process planning-Commercial systems: CAM-I, CAPP, MIPLAN, APPAS, CPPP.

TEXT BOOKS:

- 1. Mikell.P.Groover "Automation, Production Systems and Computer Integrated Manufacturing", Pearson Education Limited, 5th Edition, 2019.
- 2. Radhakrishnan P, SubramanyanS.andRaju V., "CAD/CAM/CIM", New Age, International (P) Ltd, 4th Edition, 2016.
- 3. James A. Rehg, and Henry W Kraebber, 'Computer-Integrated Manufacturing', Pearson Education Limited, 2nd Edition, 2000.

REFERENCES:

1. Kant Vajpayee S, "Principles of Computer Integrated Manufacturing", Prentice Hall India, 2003.

2. Gideon Halevi and Roland Weill, "Principles of Process Planning – A Logical Approach", Chapman & Hall, 1995.

3. Rao. P, N Tewari&T.K. Kundra, "Computer Aided Manufacturing", Tata McGraw Hill, Publishing Company, 2000.

4. Vollmann, T.E. and Bery, W.E., "Manufacturing Planning and Control Systems, Galgotia Publications, 5th Edition, 2004.

5. YoramKoren, 'Computer Control of Manufacturing Systems', McGraw Hill Education, Indian Edition, 2017.

9

TOTAL: 45 PERIODS

9

9

9

9

С

3

REFERENCES

1. Kant Vajpayee S, "Principles of Computer Integrated Manufacturing", Prentice Hall India, 2003.

2. Gideon Halevi and Roland Weill, "Principles of Process Planning – A Logical Approach", Chapman & Hall, 1995.

3. Rao. P, N Tewari &T.K. Kundra, "Computer Aided Manufacturing", Tata McGraw Hill, Publishing Company, 2000.

4. Vollmann, T.E. and Bery, W.E., "Manufacturing Planning and Control Systems, Galgotia Publications, 5th Edition, 2004.

5. Yoram Koren, 'Computer Control of Manufacturing Systems', McGraw Hill Education, Indian Edition, 2017.

OUTCOMES:

Course	e Name	ne: COMPUTER INTEGRATED MANUFACTURING SYS Course Outcomes					SYSTE	MS	Course	Code :	20MEV22					
CO				Co	urse O	utcome			Unit	K –CO	PC)s	PSO			
CO1	Explai manuf	n the kn acturing	owledge	e about	role of	comput	ter and	automa	ition in		I	K2	1,2,8,10		1,2,3	
CO2	Explai machi	n the co ne cell.	ncept o	f group	techno	logy an	d forma	tion of	parts –		II	K3	1,2,3,8,1	0	1,2,3	
CO3	CO3 Explain the concept of FMS, and sizing of FMS systems.												III K2 1,2,8,10			
CO4	CO4 Describe the automation, types of automation and automation strategies.												1,2,8,10	1,2,3		
CO5	Descri	be Auto	mated (Guided	Vehicle	Syster	n and it	s applio	ation.		IV	K2	1,2,8,10	1,2,8,10		
CO6	Descri integra	be the a ated plar	pplicati	on of co oftware.	ompute	r in CAF	PP, and	explore	e to		V	K2	1,2,8,10		1,2,3	
							CO-P	О Марј	oing							
CO	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	2	1	-	-	-	-	-	1	-	1	-	-	2	1	1	
CO2	3	2	1	-	-	-	-	1	2	1	-	-	2	1	1	
CO3	2	1	-	-	-	-	-	1	-	1	-	-	2	1	1	
CO4	XO4 2 1 1 - ·										-	-	2	1	1	
CO5	CO5 2 1 1 - 1									1	-	-	2	1	1	
CO6	2	1	-	-	-	-	-	1	-	1	-	-	2	1	1	

20MEV/35		L	Т	Ρ	С
201112 4 3 3	PRODUCTION PLANNING AND CONTROL	3	0	0	3

OBJECTIVES

- To understand the various components and functions of production planning and control
 - To gain knowledge about method study, motion study and work study,
- To understand the product planning, process planning, production scheduling, Inventory Control.
- To know the recent trends like manufacturing requirement Planning (MRP II)
- To gain knowledge in Enterprise Resource Planning (ERP).

PREREQUISITE: NIL

UNIT - I INTRODUCTION

Production planning and control – Objectives, benefits, Functions. Types of production, Product development and design - Marketing, Functional, Operational, Durability and dependability, aesthetic aspect. Profit consideration- Standardization, Simplification & specialization

UNIT – II WORK STUDY

Method study, basic procedure, Selection, Recording of process, Micro motion and memo motion study, work measurement techniques, Time study, Work sampling, Synthesis from standard data, Predetermined motion time standards.

UNIT – III PRODUCT PLANNING AND PROCESS PLANNING

Value analysis, Problems in lack of product planning, Process planning and routing-Prerequisites, Steps in process planning, Quantity determination in batch production-Machine capacity, balancing, Analysis of process capabilities in a multi-product system.

UNIT – IV PRODUCTION SCHEDULING

Master Scheduling, Scheduling rules, Gantt charts, Basic scheduling problems, Line of balance, Flow and batch production scheduling, Product sequencing, Production Control systems-Periodic batch control, Material requirement planning, kanban. Manufacturing lead time, Techniques for aligning completion times and due dates.

UNIT - V RECENT TRENDS IN PPC

Introduction to computer integrated production planning systems, elements of JUST IN TIME SYSTEMS, Fundamentals of MRP II and ERP.

TEXT BOOKS:

1. MartandTelsang, "Industrial Engineering and Production Management", S. Chand and Company, Reprint, 2006.

2. James.B.Dilworth, "Operations management – Design, Planning and Control for manufacturing and services" McGraw Hill International edition, 1992.

3. Samson Eilon, "Elements of Production Planning and Control", Universal Book Corporation, 2015 **REFERENCES:**

- 1. Elwood S.Buffa, and RakeshK.Sarin, "Modern Production / Operations Management", John Wiley and Sons, 8th Edition, 2000.
- 2. KanishkaBedi, "Production and Operations management", Oxford university press, 3rd Edition, 2013.
- 3. Melynk, Denzler, "Operations management A value driven approach" Irwin Mcgraw hill, 1995.
- 4. Norman Gaither, G. Frazier, "Operations Management", Thomson learning IE, 9th edition, 2007
- 5. Jain. K.C & L.N. Aggarwal, "Production Planning Control and Industrial Management", Khanna Publishers, 8th Edition, 1999.

9

9

9

TOTAL: 45 PERIODS

OUTC	OMES	:													
AT TH	e end	OF	THE C	COUR	SE, LE	ARNE	ERS W	ILL BE	ABL	E TO					
Cours	e Nam	ie : F	ROD	JCTIO	N PLA	ANNIN	G ANI	D CONT	ROL		Cours	e Code : 2	20MEV35		
со				Co	ourse	Outco	mes				Unit	K-CO	PC	Ds	PS Os
CO1	Expla	ain va	arious	aspec	ts of p	roduct	t devel	opment.			I	K3	1,2,3	3,11	1, 2,3
CO2	Desc	ribe	work s	samplii	ng tecl	hnique	es.				Π	K3	1,2,3	,8,11	1, 2,3
CO3	Dete	Determine the quantity in batch production system.									III	K3	1,2,3,4,	5,11,12	1, 2,3
CO4	Explain scheduling rules										IV K3		1,2,3,4	,5,7,11	1, 2,3
CO5	Dete prod	rmine uctio	e ma n syste	nufact em.	uring	lead	time	for th	ne g	iven	IV	K3	1,2,3,5	,11,12	1, 2,3
CO6	Expla	ain M	IRP ar	nd ERF	р .						V	K3	1,2,3,5	,11,12	1, 2,3
							co	-РО Ма	ppin	g					
со	PO1	P 0 2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO1	0 PO1	1 PO12	PSO1	PSO2	PSO 3
CO1	3	2	1	-	-	-	-	-	-	-	2	-	3	2	1
CO2	3	2	1	-	-	-	-	1	-	-	2	-	3	2	1
CO3	3	2	1	1	2	-	-	-	-	-	2	1	3	2	1
CO4	3	2	1	2	2	-	1	-	-	-	2	-	3	2	1
CO5	3	2	1	-	1	-	-	-	-	-	2	1	2	2	1
CO6	3 2 1 - 1 - - - 3 2 1 - 1 - - - -							-	-	2	1	2	2	1	

Electives for Honors Degree

20MEV46 OBJECTIVES

To understand the working principle of automotive batteries.

- To gain knowledge in energy storage systems.
- To understand about the battery performance
- To understand the battery management system
- To understand the requirement of batteries for automotive applications

BATTERY TECHNOLOGY

PREREQUISITE:NIL

UNIT - I INTRODUCTION TO BATTERIES

Classification of batteries, Automotive Batteries - Principle, construction and working of lead acid battery, advanced lead-acid batteries horizontal plate Pb-acid batteries for transportation, cylindrical Pb-acid battery vs. flat plate system, maintenance free batteries.

UNIT – II ENERGY STORAGE SYSTEMS

Advanced Li-ion batteries - principle of operation, battery components and design, electrode, cell and battery fabrications, Li-polymer batteries and applications, Li-S battery, Li-Air battery, Sodium battery, Magnesium battery, Aluminum battery, Advanced Ni-MH batteries for transportation, future prospects of Ni-MH batteries, super capacitors

UNIT – III BATTERY TESTING AND EVALUATION

Battery performance evaluation- Primary battery - Service time- Voltage data- Service life – ohmic load curve- Effect of operating temperature on service life. Secondary batteries- Discharge curves-Terminal voltages- Plateau voltage, Maintenance of batteries.

UNIT – IV BATTERY PACK AND BATTERY MANAGEMENT SYSTEM

Selection of battery for EVs & HEVs, Traction Battery Pack design, Requirement of Battery Monitoring, Battery State of Charge Estimation methods, Battery Cell equalization problem, thermal control, protection interface, SOC Estimation, Energy & Power estimation, Battery thermal management system, Battery Management System: Definition, Parts: Power Module, Battery, DC/DC Converter, load, communication channel, Battery Pack Safety, Battery Standards & Tests.

UNIT - V BATTERIES FOR AUTOMOTIVES – FUTURE PROSPECTS

Degrees of vehicle electrification – Battery size vs. application -USABC and DOE targets for vehicular energy storage systems – Analysis and Simulation of batteries - Equivalent circuit and life modeling – Environmental concerns in battery production – Disposal and recycling of batteries

TEXT BOOKS:

- 1. David Linden, Thomas Reddy, Hand book of batteries, MC Graw Hill Professional, Third Edition 2002
- 2. T.Minami, M.Tatsumisago, M.Wakihara, C. Iwakura, S. Kohijiya, Solid state ionics for

batteries, Springer Publication, 2009

3. SandeepDhameja, Electric Vehicle Battery Systems, Newnes publication, 2001.

REFERENCES:

1. MasatakaWakihara and Osamu Yamamoto, Lithium ion Batteries Fundamental and Performance, Wiley–VCH, Verlag GmbH, 2008.

2. Robert A.Huggins, Advanced Batteries – Materials science aspects, Springer, 2009.

3. Ibrahim Dinçer, Halil S. Hamut and Nader Javani, "Thermal Management of Electric Vehicle Battery Systems", JohnWiley& Sons Ltd., 2016.

4. Albert N. Link, Alan C. O' Connor and Troy J. Scot, Battery technology for Electric vehicles, Routledge,2015

5. G.Pistoia, J.P. Wiaux, S.P. Wolksy, Used Battery Collection and Recycling, Elsevier, 2001

L	Т	Ρ	С
3	0	0	3

9

9

9

Q

TOTAL: 45 PERIODS

OUTCOMES:

Course	CO								Course	Code:2	0MEV46	6			
СО				Coι	urse O	utcom	es				Unit	K-CO		POs	PSOs
CO1	Desci	ribe the	e const	ruction	and w	orking	of lead	acid b	atteries	S.	Ι	K2	1, 2,	3, 4, 6, 7	1, 2, 3
CO2	Expla	in the	constru	uction a	ind wo	rking of	f lithiun	n ion ba	atteries	S.	II	K2	1, 2	3, 4, 6, 7	1, 2, 3
CO3	Discu	iss abo	out the	testing	of batt		III	K2	1, 2	3, 4, 6, 7	1, 2, 3				
CO4	Expla	in the	battery	pack s	system		IV	K2	1, 2	3, 4, 6, 7	1, 2, 3				
CO5	CO5 Discuss about the battery management system.											K2 1, 2, 3, 4, 6,		3, 4, 6, 7	1, 2, 3
CO6	CO6 Discuss the environmental aspects, energy consumption, reuse and recycling of batteries.											K2	1, 2,	3, 4, 6, 7, 12	1, 2, 3
							со	-PO M	apping)					
со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	1	-	1	2	-	-	-	-	-	2	1	1
CO2	2	1	1	1	-	1	2	-	-	-	-	-	2	1	1
CO3	2	1	1	1	-	1	2	-	-	-	-	-	2	1	1
CO4	^{CO4} 2 1 1 1 - 1 2											-	2	1	1
CO5	CO5 2 1 1 - 1 2 - -										-	-	2	1	1
CO6	06 2 1 1 1 - 1 2											1	2	1	1

20MEV56	ALTERNATE FUE	ELS FOR IC ENGI	NES	L	Т	Р	C
OBJECTIVES				3	0	0	3
 To expose po To use appro To utilize alco 	otential alternate fuels a priate synthetic fuels a phol fuels effectively fo	and their character and fuel additives f r lower emissions	ristics or better combus	tion ch	aract	eristic	s
 To elaborate To utilize difference 	on the utilization of Bio erent gaseous fuels an	Diesel and its typ d predict their perf	es as a suitable ormance and cor	fuel in nbusti	CI er on ch	ngines iaracte	; eristics
PREREQUISITE: NI							0
Availability, Suitability Diesel, Hydrogen, Lic UNIT – II SPECIA	y, Properties, Merits a Juefied Petroleum Gas	and Demerits of F , Natural Gas, Biog FUELS	otential Alternati gas, Fuel standar	ve Fu ds – A	els – \STM	Alcol & EN	9 hols, Bio- 9
Different synthetic fue – types and their eff Ethers - as fuel and fue	els, Merits and demerit fect on performance a uel additives, propertie	ts, Dual, Bi-fuel an and emission cha s and characteristi	d Pilot injected fur acteristics of en cs.	iel sys gines,	tems Flex	, Fuel i fuel	additives systems,
Alcohols – Properties ignition, spark ignitior in engines. Issues & I	Production methods and oxygenated addi imitation in alcohols	and usage in eng tives. Performance	ines. Blending, d e, combustion an	ual fu d emis	el ope ssion	eratior Chara	9 n, surface acteristics
UNIT – IV BIO-DI Vegetable oils and vegetable oils – Blen and emission Charac Issues & limitation of	ESEL FUELS their important prop- ding, preheating, Tran- teristics in diesel engi using vegetable oils in	erties. Fuel prope sesterification and nes. Third generat IC engines	erties characteri: l emulsification – ion biofuels, Teri	zation. Perfo nary a	Met rman nd Qu	hods ce, co uatern	9 of using ombustion ary fuels,
Biogas, Natural gas, I Methods of utilization engines, Issues & lim	LPG, Hydrogen – Prop in engines. Performar itation in Gaseous fuel	perties, problems, s nce, combustion ar	storage and safet nd emission Char	y aspe acteris	ects. stics i	n	9
ongoon toodoo on				тс	DTAL	: 45 F	PERIODS
TEXT BOOKS: 1.Ramachandraon Alternate Fuels,20	an S., Rapid Thermoo 14	lynamic Simulation	n Model of an In	ternal	Com	bustic	on Engine
 Singh A.P. , For Internal Combust 3. Biernat K. Alte 	Alternative Fuels And ion Engines, Springer, rnative Fuels Technica	Advanced Combu 2021 al and Environmen	stion Techniques	s As S ITECH	ustair I. 201	nable 7	Solutions
REFERENCES: 1.Keith Owen 2014	and Trevor Eoley, A	utomotive Fuels F	Reference Book	, SAE	E Pub	olicatio	ons,
2. PundirB.P , I 3. Pundir B.P , 4. Richard L. B 5. S M Ashrafi	.C. Engines Combusti Engine Combustion ar echtold, Automotive Fu urRahman, Alternative	on and Emission, I nd Emission, , Nar uels Guide Book, S e Fuels and Their	Narosa Publishing osa Publishing He AE Publications, Application to C	g Hous ouse 2 2014. combu	se. 20 2011 stion)10 Engir	ies,

nman, Alte Арр MDPI, 2021

Course N	CO Course Outcomes								Course	e Code :	20MEV	56			
CO				C	ourse (Outcon	nes				Unit	K	(-CO	POs	PSOs
CO1	Expla deme	ain var rits	ious pi	ropertie	es of A	Alternat	ive Fu	els an	d their	merits	I		K2	1,2,3	1,2
CO2	Descr merits	ibe va deme	rious p rits	oropertio	es of I	Differer	nt Synt	hetic fi	uels ar	nd their	II		K2	1,2,3	1,2
CO3	Discu using	iss the additiv	perfor es.	mance	and e	missior	n chara	acteristi	cs of e	engines	II		K2	1,2,3	1,2
CO4	Expla in I.C	ain Prop Engine	perties, s.	Produ	ction m	nethods	ol fuels			K2	1,2,3	1,2			
CO5	Descr fuels.	ibe var	rious pi	ropertie	es and	-Diesel	IV		K2	1,2,3	1,2				
CO6	Discu	ss diffe	rent typ	oes utili	zation	of Gase	eous Fi	uels			V		K2	1,2,3	1,2
							CO-P	О Мар	ping						
со	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	1	-	-	-	-	-	-	-	-	2	1	1
CO2	2	1	1	1	-	-	-	-	-	-	-	-	2	1	1
CO3	2	1	1	1	-	-	-	-	-	-	-	-	2	1	1
CO4	2 1 1 1										-	-	2	1	1
CO5	2 1 1 1										-	-	2	1	1
CO6	2	1	1	1	-	-	-	-	1	2	1	1			

20MEV66	INTELLIGENT TRANSPORTATION SYSTEM	L 3	T 0	P 0	C 3
OBJECTIVES		Ū	·	Ū	· ·
 To enable the To teach stude To enable the System. 	students to study about the functional areas of Intelligent Transportate ents about the architecture of Intelligent Transportation System. (ITS) students to know the strategies and algorithms of advanced Transpo	ion Sy rt Man	stem. ageme	(ITS) ent	
 To teach stude 	ents about the concepts of Advanced Traveller and Information Syste	m (ATI	S)		
 To develop the 	e skills of the students to implement ITS in developed and developing	count	ries.		
PREREQUISITE:					
Course Code: 20GE20	03				
Course Name: Basic E	Electrical, Electronics and Instrumentation Engineering				
UNIT - I INT	RODUCTION TO INTELLIGENT TRANSPORT SYSTEM				9
Introduction to Intellig	gent Transportation Systems (ITS) -Definition – Role and Respo	nsibiliti	es –	Advar	າced
Traveller Information S	System – Fleet Oriented ITS Services – Electronic Toll Collection – Ci	ritical is	ssues	– Sec	urity
– Safety.					
UNIT – II ITS	ARCHITECTURE AND HARDWARE				9
Architecture –ITS Arc Message Sign – GPR	hitecture Framework – Hardware Sensors –Vehicle Detection – T S – GPS – Toll Collection.	echniq	ues -	- Dyna	amic
UNIT - III AD	VANCED TRANSPORT MANAGEMENT SYSTEM				9
Video Detection - Vir	rtual Loop - Cameras - ANPR – IR Lighting – Integrated Traffic M	lanage	ement	- Co	ntrol
Centre - Junction Ma	anagement Strategies- ATMS – Advanced Traveler Information S	ystems	s (ATI	S)- R	oute
Guidance - Issues	Historical - Current - Predictive Guidance - Data Collection - Anal	ysis –	Dynai	mic Tr	affic
Assignment (DTA) - C	Components – Algorithm.				
UNIT – IV AD	VANCED TRAVELLER AND INFORMATION SYSTEM				9
Travel Information -	Pre Trip and Enroute Methods- Basic ATIS Concepts - Smart F	Route	Syste	m – [Data
Collection - Process -	 Dissemination to Travelers – Evaluation of Information – Value of I 	nforma	ation -	 Busir 	ness

Opportunities. UNIT - V CASE STUDIES

Automated Highway Systems - Vehicles in Platoons-Integration of Automated Highway Systems. ITS Programs in the World – Overview of ITS implementations in developed countries, ITS in developing countries.

TOTAL: 45 PERIODS

TEXT BOOKS:

1. Choudury M A and Sadek A, "Fundamentals of Intelligent Transportation Systems Planning" Artech House, 2003.

Pradip Kumar Sarkar, Amit Kumar Jain, "Intelligent Transport Systems", PHI Learning Publishers, 2018. 2.

Turban E.,"Decision Support and Export Systems Management Support Systems", Maxwell Macmillan, 3. 1998.

REFERENCES:

1. Cycle W.Halsapple and Andrew B.Winston, "Decision Support Systems - Theory and Application", Springer Verlog, New York, 1987.

2. Sitausu S. Mittra, "Decision Support Systems - Tools and Techniques", John Wiley, New York, 1986.

3. Henry F.Korth, and Abraham Siberschatz, Data Base System Concepts, 7th edition, McGraw Hill, 2019.

4. Sussman, J. M., "Perspective on ITS", Artech House Publishers, 2005.

5. Turban. E and Aronson. J. E, "Decision Support Systems and Intelligent Systems", Prentice Hall, 2005.

т

L

Ρ

С

9

OUTCOMES:

Cours	ourse Name : INTELLIGENT TRANSPORTATION SYSTEM								Course	Code :	20MEV	66			
со	CO Course Outcomes										Unit	K-CO	Р	Os	PS Os
CO1	Deso Tran	cribe sporta	the r tion Sy	ole a stem (inced	I	K2	1	,2	1					
CO2	Expl	ain the	Archit	ecture	and Ha	ardwar	e of A	rs.			Ш	K2	1	,2	1
CO3	CO3 Describe the strategies used in Advanced Transport Management System.												1,	2,3	1,2
CO4	CO4 Discuss about the algorithms used in Dynamic Traffic Assignment System.											K2	1,	2,3	1,2
CO5	Desc used	cribe a I in Adv	ibout t /anced	he dat Trave	ta colle ller and	ection d Inforr	and e nation	valuati Syster	on pro n.	ocess	IV	K2	1,	2,3	1,2
CO6	Disc deve	uss ab loping	out th countr	e impl ies.	ementa	ation c	of ITS	in dev	eloped	and	V	K2	1,	2,3	1,2
							CO-F	PO Map	oping						
со	РО 1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	3	2	-	-	-	-	-	-	-	-	-	-	2	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-	2	-	-
CO3	3	2	1	-	-	-	-	-	-	-	-	-	2	1	-
CO4	CO4 3 2 1 ·								-	-	-	2	1	-	
CO5	3	2	1	-	-	-	-	-	-	-	-	-	2	1	-
CO6	COS 3 2 1 - - - - - - CO6 3 2 1 - - - - - -											-	2	1	-

SEMESTER VIII

	L	т	Ρ	С
PROJECT WORK	0	0	20	10
or in a group of 3 to 4 works on a topic approved	hy the	head	of the	denartme

The student individually or in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member prepares a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

TOTAL: 300 PERIODS

OUTCOMES:

20ME8L1

Course	ourse Name : PROJECT WORK									Cours	e Code :	20ME8L	.1		
СО					Cou	rse Ou	tcomes	3				Unit	K-CO	POs	PSOs
C410.1	lden mec	tify and hanical	l apply engine	the reatering a	al world nd its a	d and s Illied ar	ocietal ea	import	ance p	roblems	s in the	-	K4	1-12	1,2
C410.2	lden com	ntify, and plete ar	alyze, (nd orga	design, inized s	with a	-	K4	1-12	1,2						
C410.3	3 Apply modern engineering tools for solution												K4	1-12	1,2
C410.4	Contribute as an individual or in a team in development of technical projects												K4	1-12	1,2
C410.5	Deve activ	elop eff /ities	fective	commu	inicatio	n skills	for pr	esentat	ion of	project	related	-	K4	1-12	1,2
C410.6	Prep	bare rep	orts an	nd exan	nination	followi	ng prof	ession	al ethics	6		-	K4	1-12	1,2
							CO-	PO Maj	oping						
CO	P	' 01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C410.1		3	3	2	1	1	1	1	1	1	1	1	1	2	2
C410.2	2	3	3	2	1	1	1	1	1	1	1	1	1	2	2
C410.3		3	3	2	1	1	1	1	1	1	1	1	1	2	2
C410.4	4 3 3 2 1										1	1	1	2	2
C410.5	5	3 3 2 1 1 1 1 1 1									1	1	1	2	2
C410.6	;	3	3	2	1	1	1	1	1	1	1	1	1	2	2

OPEN ELECTIVE – II (VII SEMESTER) offered to other Department

20OE105 SOLAR PHOTOVOLTAIC FU APPLICATIO	NDAMENTALS AND	L 3	т 0	Р 0	3	С
OBJECTIVES		-	-	-	-	
 To explain basics of solar photovoltaic. 						
 To explain basics of PV Systems. 						
 To explain basics of PV System grid connect 	tions.					
 To explain basics of Hybrid systems 						
 To know in depth of its types and design of 	various PV-interconnected s	ystems				
PREREQUISITE:						
20ME304 Engineering Thermodynamics						
20HS401 Environmental Science and Engineering						
UNIT - I PHOTOVOLTAIC BASICS					9	
Structure and working of Solar Cells - Types, El	ectrical properties and Beha	avior o	f Sol	ar Ce	ells -	- Cell
properties and design - PV Cell Interconnection and	I Module Fabrication – PV N	lodules	and	array	's - E	Basics
of Load Estimation.						
UNIT – II STAND ALONE PV SYSTEMS					9	
Schematics, Components, Batteries, Charge Cond	tioners - Balance of system	compo	nent	s for l	DC a	and/or
AC Applications - Typical applications for lighting, w	ater pumping etc.					
UNIT – III GRID CONNECTED PV SYSTEMS				-	9	
Schematics, Components, Charge Conditioners, In PV System in Buildings.	erface Components - Baland	ce of s	/stem	1 Corr	וססח	ents -
UNIT – IV HYBRID SYSTEMS					9	
Solar, Biomass, Wind, Diesel Hybrid systems - Com UNIT - V DESIGN OF PV SYSTEMS	parison and selection criteria	a for a g	given	appli	catio 9	n.
Radiation and load data - Design of System Co Reliability - Simple Case Studies	mponents for different PV	Applic	ations	3 – 8	Sizinę	g and
		т	TAL	: 45	PER	IODS
TEXT BOOKS:						
 CS Solanki: Solar Photovotaics – Fundament Ltd., 2015. 	als, Technologies and Applic	ations,	PHI	Learn	ing F	Pvt.
 Martin A. Green, Solar Cells Operating Princip Hall. 2008 	eles, Technology, and Syster	n Appli	catio	ns Pre	entic	e-
3. Nelson, J the Physics of Solar Cells. Imperial	College Press, 2017.					

REFERENCES:

- 1. Thomas Markvart, Solar Electricit, John Wiley and Sons, 2015.
- 2. Stuart R. Wenham, Martin A. Green, Muriel E. Watt, Richard Corkish (Editors), Applied Photovoltaics, Earthscan, 2014.
- 3. Michael Boxwell, the Solar Electricity Handbook, Code Green Publishing, UK, 2015.
- 4. Rik DeGunther, Solar Power Your Home for Dummies, Wiley Publishing Inc, 2016.
- 5. Chetan Singh Solanki, Renewable Energy Technologies; A Practical Guide for Beginners, PHI School Books, 2014.

Course Name : SOLAR PHOTOVOLTAIC FUNDAMENTALS AND APPLICATIONS)	Course Code : 20OE105								
СО	Course Outcomes											K-C	:0	POs		PSOs			
CO1	Summarize the basics of Photovoltaic systems.											K2		1, 2, 3		1, 2, 3			
CO2	Explain the component of stand- alone photovoltaic systems											K2		1,	2, 3	1, 2, 3			
CO3	Explain the component of grid connected photovoltaic systems										K2	K2		2, 3	1, 2, 3				
CO4	Summarize the basics of Hybrid systems.									IV	K2	K2 1		2, 3	1, 2, 3				
CO5	Explain the selection criteria for a given Photovoltaic application.									ation.	V	K2	K2 1		2, 3	1, 2, 3			
CO6	³ Design of various components of solar PV systems.										V	K3	1,		2, 3	1, 2, 3			
	CO-PO Mapping																		
со	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO	1	PSO2	PSO3			
CO1	2	1	1	-	-	-	-	-	-	-	-	-	2		1	1			
CO2	2	1	1	-	-	-	-	-	-	-	-	-	2		1	1			
CO3	2	1	1	-	-	-	-	-	-	-	-	-	2		1	1			
CO4	2	1	1	-	-	-	-	-	-	-	-	-	2		1	1			
CO5	2	1	1	-	-	-	-	-	-	-	-	-	2		1	1			
CO6	3	2	1	-	-	-	-	-	-	-	-	-	3		2	1			

L

3

Т

0

Ρ

0

С

3

9

9

9

9

200E106 FUNDAMENTALS OF PRODUCT DESIGN

OBJECTIVES:

- To Understand various global trends and identify the scope of a new product design
- To translate conceptual idea into detailed design
- To understand the concept of new product design.
- To understand various Quality Concepts in product design
- To impart knowledge on various industrial design process

PREREQUISITE: NIL

UNIT - I PRODUCT PLANNING

Product Planning Process - Identify Opportunities - Evaluating and Prioritizing Projects - Allocating Resources and Timing - Identifying Customer Needs - Raw Data from Customers - Interpreting Raw Data in Terms of Customer Needs - Organizing the Needs into a Hierarchy - Establishing the Relative Importance of the Needs - Case study for motor driven nailer - Reflecting on the Results and the Process

UNIT – II **CONCEPT GENERATION AND SELECTION**

Task - Structured approaches - clarification - search - externally and internally - explore systematically - reflect on the solutions and processes - concept selection - methodology -benefits. 9

UNIT – III **PRODUCT ARCHITECTURE**

Implications - Product change - variety - component standardization - product performance manufacturability - product development management - establishing the architecture - creation clustering - geometric layout development - fundamental and incidental interactions - related system level design issues.

UNIT – IV **QUALITY CONCEPTS**

Design For Quality - Quality Function Deployment - Design Of Experiments - Failure Modes & Effect Analysis - TQM - Design For Six Sigma - Brain Storming Techniques - Design For Manufacturing - Design Ethics - Safety and Environmental Considerations in Product Design

UNIT - V INDUSTRIAL DESIGN

Integrate process design - Managing costs - Robust design - Need for industrial design - impact design process - investigation of for industrial design - impact - design process-conceptualization refinement - management of the industrial design process - technology driven products - user driven products – assessing the quality of industrial design.

TOTAL: 45 PERIODS

TEXT BOOKS:

1. Anita Goyal, Karl T Ulrich, Steven D Eppinger, "Product Design and Development", Tata McGraw Hill Education, 4th Edition, 2009.

2. Kevin Otto, Kristin Wood, "Product Design", Indian Reprint 2004, Pearson Education

3. George E Dieter, Linda C Schmidt, "Engineering Design", Mc-Graw Hill International Edition, 5th Edition, 2012

REFERENCES:

1. David G.Ullman, "The Mechanical Design Process", Tata McGraw Hill, 2011

2. Stephen Rosenthal, Effective Product Design and Development, Business One Orwin, 1992,

3. Staurt Pugh, Tool Design -Integrated Methods for Successful Product Engineering, Addison Wesley Publishing, 1991.

4. Chitale A K and Gupta R C, "Product Design and Manufacturing", PHI 2007.

5. Yousef Haik, T. M. M. Shahin, "Engineering Design Process", Cengage Learning, 2nd Edition Reprint, 2010.

Course Name : FUNDAMENTALS OF PRODUCT DESIGN Course Code : 200E106 со **Course Outcomes** Unit K-CO POs **PSOs** Explain the basic concepts of product design CO1 Т K3 1,2,3,6,9,10 1,2,3 CO2 Describe the basic concepts of concurrent Engineering K3 T 1,2,3,6,9,10 1,2,3 Generate various concepts for a product design and to CO3 K3 Ш 1,2,3,4,6,9,10 1,2,3 select the best concept CO4 Discuss the concepts and importance of product K3 Ш 1,2,3,6,9,10 1,2,3 architecture CO5 Apply the quality concepts to develop robust product IV K3 1,2,3 1,2,3,6,9,10 Illustrate the importance of industrial design in view of CO6 V K3 1,2,3,4,6,9,10 1,2,3 aesthetics factors and ergonomic factors CO-PO Mapping PSO PO PO2 PO3 со PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 3 1 CO1 _ _ -3 2 1 1 1 2 1 --1 1 CO2 _ -_ 2 1 3 1 2 1 1 -1 1 _ CO3 --_ -_ 3 2 1 1 1 1 1 2 1 1 CO4 -_ -_ --3 2 1 1 1 1 2 1 1 CO5 _ -----3 2 1 1 1 1 2 1 1 CO6 --_ -_ 3 2 1 1 1 1 1 2 1 1

KLNCE UG MECH R2020 (AY 2021-2022)

20OE10	AUTONOMOUS AND ELECTRIC VEHICLES	L 3	T 0	P 0	С 3	
OBJECTI	VES	Ũ	Ũ	Ū	Ũ	
• T	D Understand the technologies used in autonomous system					
• T	o understand the perception, prediction and routing of autonomous driving	3				
• T	o understand the planning and control of autonomous driving					
• T	o understand the architecture of electric vehicle and energy storage devi	ce				
• T	o understand the architecture of hybrid electric vehicle					
PREREQ	UISITE: NIL					
UNIT - I	AUTONOMOUS DRIVING TECHNOLOGIES				9	
Autonomo	ous driving Technologies overview- Autonomous driving algorithms-A	uton	omou	s dri	ving	
INIT – II					a	
Percentio	n in Autonomous Driving – Detection – Segmentation – Stereo, ontical flo	w an	d sce	ne fla	- ///	
Tracking	Prediction and Routing – Planning and control – Traffic Prediction- Lane	evel	Rout	ina		
	DECISION AND PLANNING	0101		n.g.	9	
Decision.	planning and control – Behavioral Decisions – Motion Planning – Feedba	ck co	ontrol		U	
UNIT – IV	ELECTRIC VEHICLE AND ENERGY STORAGE	0.1 00			9	
Basics of	Vehicle mechanisms, history of Electric vehicles (EV), Electric vehicle	Arch	itectu	re: N	laior	
compone	nts of electric vehicle. Energy storage-Battery, fuel cell and ultra capacitor	•		-	-] -	
UNIT - V					9	
Introductio	on to hybrid electric vehicle, Types- series, parallel and complex configu	ratio	ו- Arc	chited	ture	
	electric vehicle-onve train-sizing of components.	T A I		ייםי	200	
		IAL	43 F	EKI	JD3	
	UND: baashan Liu: Livun Li: Jia Tang: Shuang Wu: Jaan Luo Caudiat "Creatin	~ ^+	onon	20110		
1. S V	ehicle Systems", Morgan & Claypool, 2018.	JAU	onon	lous		
2. A	Perallos, U. Hernandez-jayo, E. Onieva and I. Garcia-Zuazola (Eds.), In	tellige	ent Tr	ransp	ort	
S	ystems: Technologies and Applications, Wiley publications, 2015.	•				

Iqbal Hussain, Electric & Hybrid Vehicles – Design Fundamentals, CRC Press, New York, 2003.

REFERENCES:

1. Danil Prokhorov, "Computational Intelligence in Automotive Applications", Studies in Computational Intelligence book series, Springer, 2008.

2. H. Cheng, Autonomous Intelligent Vehicles: Theory, Algorithms, and Implementation, Berlin:Springer, 2011.

3. Andreas Herrmann, Walter Brenner, Rupert Stadler, Autonomous Driving: How the Driverless Revolution will Change the World Emerald Publishing, 2018

4. Michael E. McGrath, Autonomous Vehicles: Opportunities, Strategies, and Disruptions, Amazon, 2018.

5. Tom Denton, Electric and Hybrid Vehicles,1st edition, Routledge Publishers,2017

KLNCE UG MECH R2020 (AY 2021-2022)

OUTCOMES: AT THE END OF THE COURSE, LEARNERS WILL BE ABLE TO:

Course	e Name	: AUT	ONON	IOUS /		LECTR		HICLE			Cours	e Code	: 20	OE107	
СО				C	ourse	Outco	mes				Unit	K-0	0	POs	PSOs
CO1	Discu syste	iss the ms.	e lates	t techi	nologie	I	K2		1, 2, 3, 4, 5, 6, 7	1, 2, 3					
CO2	Expla	percep	tion of	autonc	11	K2		1, 2, 3, 4, 6, 7	1, 2, 3						
CO3	Expla	predict	ion and	d routin	11	K2		1., 2, 3, 4, 6, 7	1, 2, 3						
CO4	Explain the planning and control of autonomous driving.											К2		1, 2, 3, 4, 6, 7	1, 2, 3
CO5	Explain the importance of electric vehicle and energy storage system.											К2		1, 2, 3, 4, 6, 7	1, 2, 3
CO6	Discuss about the hybrid electric vehicles.										V	K2		1, 2, 3, 4, 6, 7	1, 2, 3
							co	-PO M	apping	9					
со	РО 1	PO 2	PO 3	РО 4	PO 5	PO 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	P S O 1	PSO2	PSO3
CO1	2	1	1	1	1	1	2	-	-	-	-	-	2	1	1
CO2	2	1	1	1	-	1	2	-	-	-	-	-	2	1	1
CO3	2	1	1	1	-	1	2	-	-	-	-	-	2	1	1
CO4	2	1	1	1	-	1	2	-	-	-	-	-	2	1	1
CO5	2	1	1	1	-	1	2	-	-	-	-	-	2	1	1
CO6	2	1	1	1	-	1	2	-	-	-	-	-	2	1	1

20OE108	INDUSTRIAL SAFETY PRACTICES	L 3	Т 0	Р 0	C 3
OBJECTI	/ES	•	-	-	-
• To • To • To • To • To	o impart knowledge on safety engineering fundamentals. o gain knowledge on safety management practices. o understand about the chemical, fire, mechanical hazards. o understand about noise and vibration control. o gain knowledge in Factories Act.				
PREREQU	JISITE: NIL				
UNIT - I	INTRODUCTION				9
Evolution vessels, E	of modern safety concepts – Fire prevention – Mechanical ha: lectrical Exposure.	zards ·	– Bo	ilers,	Pressure
Chemical	exposure - Toxic materials - Radiation Ionizing and Non-ioniz	zina P	adiati	on -	9 Industrial
Hvaiene –	Industrial Toxicology.	ing its	aulati	011 -	muusinai
UNIT - III	ENVIRONMENTAL CONTROL				9
Industrial Control of UNIT – IV	Health Hazards – Environmental Control – Industrial Noise - Nois Noise, Vibration, - Personal Protection. HAZARD ANALYSIS	se mea	asurir	ng ins	truments, 9
System Sa (FMEA), H	afety Analysis –Techniques – Fault Tree Analysis (FTA), Failure M AZOP analysis and Risk Assessment. SAFETY REGULATIONS	lodes a	and E	ffects	Analysis
Explosions regulations	 a Disaster management – catastrophe control, hazard control, s, Product safety – case studies. 	^r ol, Fa	actorie	es Ac	t, Safety
TEXT BO	DKS:				
 John V David I Pearso Deshm 	Grimaldi, "Safety Management", AITB S Publishers, 2003. Goetsch, "Occupational Safety and Health for Technologists", n Education Ltd. 5 th Edition, 2005. ukh L M, "Industrial Safety Management", Tata McGraw-Hill Publish I CES:	Engine	eers a	and M ny Ltd	1anagers, .,2005
1. Safety N 2. Charles	/lanual, "EDEL Engineering Consultancy", 2000. D. Reese. "Occupational Health and Safety Management". CRC Pr	ess. 20	003.		

3. Philip E. Hagan, John Franklin Montgomery, James T. O'Reilly, "Accident Prevention Manual – NSC", Chicago, 2009.

4. John Davies, Alastair Ross, Brendan Wallace, "Safety Management: A Qualitative Systems Approach", CRC Press, 2003.

5. Anil Mital, "Advances in Industrial Ergonomics and Safety", Taylor and Francis Ltd, London, 1989

OUTCOMES:

Cours	e Nam	Name : INDUSTRIAL SAFETY PRACTICES									Course Code : 200E108							
со	Course Outcomes											K- CO	PC)s	PSOs			
CO1	Illustrate the importance of safety in Boilers and Pressure vessels.											К3	1,2,3,4,6	,10,12	1,2			
CO2	Identify and prevent chemical, environmental mechanical, fire hazard.										II	К3	1,2,3,4,6	,10,12	1,2			
CO3	Collect variou	ct, ana is safe	alyze a ty tech	nd int	erpret	the ad	ccident	s data	based	d on	Ш	K3	1,2,3,4,5	,6,10,12	1,2			
CO4	Apply proper safety techniques on safety engineering and management.										IV	K3	1,2,3,4,5	1,2				
CO5	Perfo	rm haz	ard and	alysis.							V	K3	1,2,3,4,5	1,2				
CO6	Desig imple	n the mentin	syste g safet	em wit y regul	h env ation.	ironme	ental c	onscio	usness	s by	V	K3	1,2,3,4,6	1,2				
CO-PO Mapping																		
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	3	3	1	1	-	2	-	-	-	1	-	1	2	1	-			
CO2	3	3	1	1	-	2	-	-	-	1	-	1	2	1	-			
CO3	3	3	1	1	-	2	-	-	-	1	-	1	2	1	-			
CO4	3	3	1	1	1	2	-	-	-	1	-	1	2	1	-			
CO5	3	3	1	1	1	2	-	-	-	1	-	1	2	1	-			
CO6	3	3	1	1	-	2	-	-	-	1	-	1	2	1	-			